SERVIÇO PÚBLICO FEDERAL - MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CURSO DE ENGENHARIA MECATRÔNICA

Campus V - DIVINÓPOLIS

DISCIPLINA: Física II	CÓDIGO:
EIXO: 2. Física e Química	PERÍODO: 3º.

VALIDADE	CARGA HORÁRIA	CRÉDITOS	MODALIDADE DE OFERTA
2014 / 1	Total: 60 Semanal: 4	4	(X) Semestral () Anual

PRÉ-REQUISITOS:	CÓ-REQUISITOS:
Física I e Cálculo II	(Não há)

EMENTA

Carga elétrica. Lei de Coulomb. Campo elétrico. Lei de Gauss. Potencial elétrico. Capacitância e dielétricos. Corrente elétrica. Resistência elétrica. Força eletromotriz e Circuitos de corrente contínua. Campo magnético. Lei de Ampère. Indução eletromagnética. Lei de Faraday. Ondas eletromagnéticas. Lei de Lenz. Indutância e energia do campo magnético. Circuitos de corrente alternada.

CONTEÚDO PROGRAMÁTICO: Unidade / Sub-unidade / Nº de aulas por conteúdo

Unidades de ensino	Carga-horária horas-aula
1 O Campo Elétrico e A Lei de Gauss Carga elétrica e matéria; lei de Coulomb; o campo elétrico; fluxo elétrico e Lei de Gauss.	12
2 O Potencial Elétrico e Circuitos Elétricos O potencial elétrico; capacitância e dielétricos; corrente elétrica; resistência elétrica; força eletromotriz; circuitos de corrente contínua.	14
3 O Campo Magnético e a Lei de Ampère O campo magnético; o Efeito Hall; a lei de Biot-Savart; a lei de Ampère.	16
4 O Campo Magnético e a Lei de Faraday Indução eletromagnética; a lei de Faraday; a lei de Lenz; indutância e energia do campo magnético; circuitos de corrente alternada; ondas eletromagnéticas; a lei de Gauss do Magnetismo; síntese das equações de Maxwell.	18
Total	60

OBJETIVOS: A disciplina deverá possibilitar ao estudante

Proporcionar conhecimentos básicos sobre os tópicos apontados na ementa da disciplina, tais como:

Estudar os princípios físicos da eletrostática, e estar apto a resolver os problemas, que envolvam força elétrica, campo elétrico e potencial elétrico.

• Estudar os princípios da eletrodinâmica, e resolver problemas que envolvam correntes elétricas, circuitos e campo magnético.

Os alunos ao final do curso, estarão aptos a efetuar medidas e analisar circuitos elétricos, com associação de resistores e capacitores em série, paralelo e misto.

Bibliografia Básica	
1	HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física Vol.3 I III
	Eletromagnetismo. 8ª Edição Rio de Janeiro: Editora LTC, 2009
2	YOUNG, H. D.; FREEDMAN, R.A. Sears & Zemansky Física II
	Eletromagnetismo 12ª Edição São Paulo: Addison Wesley, 2004
3	TIPLER, P., MOSCA, G. Física para Cientistas e Engenheiros, vol 2,
	Eletricidade, Magnetismo e Ótica. 6ª Edição Rio de Janeiro: LTC Livros
	Técnicos e Científicos, 2009

Bibliografia Complementar	
1	CHAVES, A. S. Física Básica. Eletromagnetismo. Rio de Janeiro: LTC Livros
	Técnicos e Científicos, 2007
2	SERWAY, A. R, Jewett, J. W. Princípios de Física. Eletromagnetismo. Vol.3 3ª
	edição, Thomson 2004
3	NUSSENZVEIG, H. M. Curso de Física Básica, Vol. 3, Eletromagnetismo
	Editora Blucher, 1997
4	HALLIDAY, RESNICK, KRANE, STANLEY, Física Vol 3, 5ª edição, LTC Livros
	Técnicos e Científicos, 2004
5	FEYNMAN, R. P. Lições de Física. Porto Alegre: Artmed.